General

Combinatorial Glyoxal Cross-Linking and Glutamic Acid Capping for Mitigating Calcification in Bovine Pericardium

Bioprosthetic heart valves (BHVs) offer advantages over mechanical valves but are limited by long-term degeneration and calcification. This study aimed to develop a durable BHV material using decellularized bovine pericardium (BP) and alternative cross-linking strategies. BP was decellularized using a combination of sodium deoxycholate (SDC) and Triton X-100 (TX), which removed cellular components while preserving the extracellular matrix (ECM), as confirmed by histological, DNA quantification,...
Continue reading
General

In vitro model assesses the susceptibility of polymeric scaffolds for material-driven heart valve regeneration to calcification

CONCLUSION: The 3D in vitro model established in this study effectively mimics calcification in TE material constructs, aiding in systematic testing and comparison of cardiovascular TE materials. It can help understand calcification principles and evaluate potential risk factors (e.g., strain). As such, the model will support the design of biomaterials for in situ HVTE in particular and implantable polymer grafts in general.
Continue reading
General

Bovine pericardial patch with reduced crosslinking time preserves matrix integrity and mitigates calcification in rat subcutaneous tissue

Prosthetic valves derived from bovine pericardium (BP) are crucial for heart valve replacement, yet current crosslinking methods with glutaraldehyde can lead to immune responses and calcification. This study evaluated the effects of reducing the glutaraldehyde crosslinking time from 10 to 5 days in bovine pericardial patches for use as heart valve substitutes. In addition to examining the physical properties of the BP, the study analyzed the biocompatibility, tissue structure, and calcification...
Continue reading
General

A Self-Generated Electricity-Driven Sclera reinforcement bionic piezoelectric patch for Management of High Myopia

CONCLUSIONS: Both in vitro and in vivo experiments demonstrate that our precisely designed patch provided a stable and effective solution for reducing progressive axial elongation in HM. By leveraging nanotechnology, electrical stimulation, and scleral reinforcement surgery, this study offers a groundbreaking approach with significant implications for both scientific research and clinical practice. Our strategy paves the way for enhanced surgical outcomes in HM treatment, offering a promising...
Continue reading